Bài 2. TỔNG VÀ HIỆU CỦA HAI VÉCTƠ

1. Tổng của hai véc-tơ


Cho hai véc-tơ \(\overrightarrow{a}\)\(\overrightarrow{b}\). Từ một điểm \(A\) tùy ý, lấy hai điểm \(B\), \(C\) sao cho \(\overrightarrow{AB}=\overrightarrow{a}\), \(\overrightarrow{BC}=\overrightarrow{b}\). Khi đó \(\overrightarrow{AC}\) được gọi là tổng của hai véc-tơ \(\overrightarrow{a}\)\(\overrightarrow{b}\) và được kí hiệu là \(\overrightarrow{a}+\overrightarrow{b}\).

Image


Vậy \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\).


Quy tắc 3 điểm: Với ba điểm \(M\), \(N\), \(P\), ta có \(\overrightarrow{MN}+\overrightarrow{NP}=\overrightarrow{MP}\).

Image


Chú ý. Khi cộng hai véc-tơ theo quy tắc ba điểm, điểm cuối của véc-tơ thứ nhất phải là điểm đầu của véc-tơ thứ hai.


Quy tắc hình bình hành: Nếu \(OABC\) là hình bình hành thì ta có \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}\).

Image


Chú ý. Để áp dụng quy tắc hình bình hành, ta cần đưa bài toán tìm tổng hai véc-tơ về bài toán tìm tổng của hai véc-tơ có chung điểm đầu.


2. Tính chất của phép cộng các véc-tơ


+ Tính chất giao hoán: \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}\);

+ Tính chất kết hợp: \(\left(\overrightarrow{a}+\overrightarrow{b}\right)+\overrightarrow{c}=\overrightarrow{a}+\left(\overrightarrow{b}+\overrightarrow{c}\right)\);

+ Với mọi véc-tơ \(\overrightarrow{a}\), ta luôn có \(\overrightarrow{a}+\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{a}=\overrightarrow{a}\).

Chú ý. Từ tính chất kết hợp, ta có thể xác định được tổng của ba véc-tơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\). kí hiệu là \(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\) với \(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\left(\overrightarrow{a}+\overrightarrow{b}\right)+\overrightarrow{c}\).


3. Hiệu của hai véctơ


Cho hai véc-tơ \(\overrightarrow{a}\)\(\overrightarrow{b}\). Hiệu của hai véc-tơ \(\overrightarrow{a}\)\(\overrightarrow{b}\) là véc-tơ \(\overrightarrow{a}+ (-\overrightarrow{b})\) và kí hiệu \(\overrightarrow{a}-\overrightarrow{b}\).

Image


Chú ý. Cho ba điểm \(O\), \(A\), \(B\), ta có \(\overrightarrow{OB}-\overrightarrow{OA}=\overrightarrow{AB}\).


4. Tính chất véc-tơ của trung điểm đoạn thẳng và trọng tâm tam giác


+ Điểm \(M\) là trung điểm của đoạn thẳng \(AB\) khi và chỉ khi \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\).

+ Điểm \(G\) là trọng tâm tam giác \(ABC\) khi và chỉ khi \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).

Image
Lỗi khi tải dữ liệu từ BaitapSGK10/t10ch5b2sgk2.tex Lỗi khi tải dữ liệu từ BaitapSGK10/t10ch5b2sgk1.tex